

To Prove: \(\frac{AM}{AB}=\frac{AN}{AD}\)
In the given figure, LM || CB
By using the basic proportionality theorem, we obtain
\(\frac{AM}{AB}=\frac{AL}{AC}\) ......(i)
Similarly, LN || CD
∴\(\frac{AN}{AD}=\frac{AL}{AC}\) ......(ii)
From (i) and (ii) we obtain
\(\frac{AM}{AB}=\frac{AN}{AD}\)
Hence Proved

In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).