
To Prove: EF||QR
Proof:

In ∆ POQ, DE || OQ
∴ \(\frac{PE}{EQ}=\frac{PD}{DO}\) (basic proportionality theorem)....(i)
In ∆POR, DF||OR
∴ \(\frac{PF}{FR}=\frac{PD}{DO}\) (basic proportionality theorem)....(ii)
From (i) and (ii), we obtain,
\(\frac{PE}{EQ}=\frac{PF}{FR}\)
∴ EF||QR
Hence Proved.

In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).