Step 1: Given information.
In \( \triangle ODC \) and \( \triangle OBA \), we are told that \( \triangle ODC \sim \triangle OBA \).
Given that:
\[
\angle BOC = 125^\circ, \quad \angle CDO = 70^\circ
\]
Step 2: Find \( \angle DOC \).
Since \( \angle BOC = 125^\circ \) (vertically opposite angle),
\[
\angle DOC = 180^\circ - 125^\circ = 55^\circ
\]
Step 3: Relation from similarity.
From similarity \( \triangle ODC \sim \triangle OBA \), corresponding angles are equal:
\[
\angle CDO = \angle OAB
\]
But \( \angle CDO = 70^\circ \). However, we must check consistency with the interior sum.
In \( \triangle ODC \):
\[
\angle ODC + \angle DOC + \angle OCD = 180^\circ
\]
\[
70^\circ + 55^\circ + \angle OCD = 180^\circ
\]
\[
\angle OCD = 55^\circ
\]
Step 4: Corresponding angles in similar triangles.
Hence, \( \angle OAB = \angle OCD = 55^\circ \).
Step 5: Final answer.
\[
\boxed{\angle OAB = 55^\circ}
\]