In the circuit shown below, assuming an ideal op-amp, for an input voltage \( V_{in} = 1 \, V \), the output voltage \( V_{out} = ? \, \) (in vol)
\( V_+ = V_- \) due to the infinite gain and the presence of negative feedback.Given:
\( V_+ = V_{in} = 1 \, \text{V} \)Since \( V_+ = V_- \), it follows that:
\( V_- = 1 \, \text{V} \)Output Voltage:
Two batteries of emf's \(3V \& 6V\) and internal resistances 0.2 Ω \(\&\) 0.4 Ω are connected in parallel. This combination is connected to a 4 Ω resistor. Find:
(i) the equivalent emf of the combination
(ii) the equivalent internal resistance of the combination
(iii) the current drawn from the combination
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
The plot of \( \log_{10} ({BMR}) \) as a function of \( \log_{10} (M) \) is a straight line with slope 0.75, where \( M \) is the mass of the person and BMR is the Basal Metabolic Rate. If a child with \( M = 10 \, {kg} \) has a BMR = 600 kcal/day, the BMR for an adult with \( M = 100 \, {kg} \) is _______ kcal/day. (rounded off to the nearest integer)
The frequency of the oscillator circuit shown in the figure below is _______(in kHz, rounded off to two decimal places).
Given: \( R = 1 \, k\Omega; R_1 = 2 \, k\Omega; R_2 = 6 \, k\Omega; C = 0.1 \, \mu F \)