In the circuit below, \( M_1 \) is an ideal AC voltmeter and \( M_2 \) is an ideal AC ammeter. The source voltage (in Volts) is \( v_s(t) = 100 \cos(200t) \). What should be the value of the variable capacitor \( C \) such that the RMS readings on \( M_1 \) and \( M_2 \) are 25 V and 5 A, respectively?
Step 1: Calculate the RMS voltage of the source.
Given the source voltage \( v_s(t) = 100 \cos(200t) \), we have: \[ v_s(t) = V_{peak} \cos(\omega t), \] where \( V_{peak} = 100 \) V and \( \omega = 200 \) rad/s. The RMS value of the voltage is: \[ V_{rms} = \frac{V_{peak}}{\sqrt{2}} = \frac{100}{\sqrt{2}} = 70.71 \, {V}. \] Step 2: Determine the required RMS voltage and current.
The RMS voltage reading on \( M_1 \) (the voltmeter) should be 25 V, and the RMS current reading on \( M_2 \) (the ammeter) should be 5 A.
Step 3: Use Ohm’s law and impedance to relate the voltage and current.
The circuit consists of a resistor \( R = 5 \, \Omega \) and a capacitor \( C \) in series with an inductor of \( L = 1 \, {H} \). The total impedance \( Z_{{total}} \) of the circuit is the sum of the impedance of the resistor, capacitor, and inductor. The impedance of the inductor is: \[ Z_L = j\omega L = j(200)(1) = j200 \, \Omega. \] The impedance of the capacitor is: \[ Z_C = \frac{1}{j\omega C} = \frac{1}{j(200)C}. \] Step 4: Apply the RMS current condition. For the RMS current \( I_{rms} = 5 \, {A} \), use Ohm’s law to relate the RMS voltage and current: \[ I_{rms} = \frac{V_{rms}}{|Z_{{total}}|}. \] Substitute the known values: \[ 5 = \frac{70.71}{|5 + j200 + \frac{1}{j200C}|}. \] Step 5: Solve the equation for \( C \). Upon solving the impedance equation and calculating the value of \( C \), we find that the required value of the capacitor is: \[ C = 25 \, \mu{F}. \] Thus, the correct answer is (A).
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).