In photoelectric effect, the stopping potential \( V_0 \) vs frequency \( \nu \) curve is plotted. \( h \) is the Planck's constant and \( \phi_0 \) is the work function of metal.
(A) \( V_0 \) vs \( \nu \) is linear.
(B) The slope of \( V_0 \) vs \( \nu \) curve is \( \frac{\phi_0}{h} \).
(C) \( h \) constant is related to the slope of \( V_0 \) vs \( \nu \) line.
(D) The value of electric charge of electron is not required to determine \( h \) using the \( V_0 \) vs \( \nu \) curve.
(E) The work function can be estimated without knowing the value of \( h \).
Choose the correct answer from the options given below:
The photoelectric equation is given by: \[ V_0 = \frac{h\nu}{e} - \phi_0, \] where: - \( V_0 \) is the stopping potential, - \( \nu \) is the frequency of incident light, - \( h \) is Planck's constant, - \( e \) is the charge of the electron, - \( \phi_0 \) is the work function. From this equation, we can see that \( V_0 \) is linear with respect to \( \nu \), with a slope of \( \frac{h}{e} \), and the intercept gives the value of \( \phi_0 \).
Final Answer: (3) (A), (B) and (C) only.
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:

The net current flowing in the given circuit is ___ A.

If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .