Question:

In order to measure the internal resistance r1 of a cell of emf E, a meter bridge of wire resistance R0 = 50 Ω, a resistance \(\frac{R_0}{2}\), another cell of emf \(\frac{E}{2}\) (internal resistance r) and a galvanometer G are used in a circuit, as shown in the figure. If the null point is found at l = 72 cm, then the value of r 1 = ____
Resistor

Updated On: May 11, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 3

Solution and Explanation

Step 1: Expression for current in the main circuit
The total resistance in the circuit is given as the sum of the internal resistance \( r_1 \) and the effective resistance of the external circuit, which is \( \frac{3R_0}{2} \).
So, the total current in the circuit is:
\( I = \frac{E}{r_1 + \frac{3R_0}{2}} \)

Step 2: Apply Kirchhoff’s loop rule
For a loop containing the emf source and the resistors, the KVL (Kirchhoff’s Voltage Law) equation is:
\( +E - I \cdot R_0 \cdot 0.72 - I \cdot r_1 - \frac{E}{2} = 0 \)
Here,
- The potential drop across a portion of \( R_0 \) is \( I \cdot R_0 \cdot 0.72 \)
- \( I \cdot r_1 \) is the internal resistance drop
- \( \frac{E}{2} \) is a given opposing emf term

Step 3: Substitute current expression into KVL equation
Replace \( I \) with \( \frac{E}{r_1 + \frac{3R_0}{2}} \) in the KVL equation:
\( \frac{E}{2} = \frac{2E}{2r_1 + 3R_0} \cdot (0.72R_0 + r_1) \)

Step 4: Simplify the equation
Multiply both sides by 2:
\( 2r_1 + 3R_0 = 4(0.72R_0 + r_1) \)
Expand the right-hand side:
\( 2r_1 + 3R_0 = 2.88R_0 + 4r_1 \)

Step 5: Rearranging the terms
Bring like terms together:
\( 3R_0 - 2.88R_0 = 4r_1 - 2r_1 \)
\( 0.12R_0 = 2r_1 \)

Step 6: Solve for internal resistance \( r_1 \)
Divide both sides by 2:
\( r_1 = \frac{0.12R_0}{2} = 0.06R_0 \)
If \( R_0 = 50Ω \), then:
\( r_1 = 0.06 × 50 = 3Ω \)

Final Answer:
The internal resistance \( r_1 = \mathbf{3 \, \Omega} \)

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Current Electricity

Current electricity is defined as the flow of electrons from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with alternating current.