1. In the hydrogen atom, orbital radius $r_n = 52.9 n^2$ pm, where $n$ is the principal quantum number.
2. For larger radius 2592.1 pm: $n_2^2 = 2592.1 / 52.9 \approx 49$, so $n_2 = 7$.
3. For smaller radius 211.6 pm: $n_1^2 = 211.6 / 52.9 \approx 4$, so $n_1 = 2$.
4. Energy of level $E_n = -13.6 / n^2$ eV. Difference $\Delta E = 13.6 (1/n_1^2 - 1/n_2^2) = 13.6 (1/4 - 1/49) \approx 13.6 \times 0.2296 \approx 3.12$ eV.
5. Convert to joules: $3.12 \times 1.602 \times 10^{-19} \approx 5 \times 10^{-19}$ J.
6. Therefore, the correct option is (2) $5\times10^{-19}$.