Step 1: Model the constraint.
Each row must contain exactly one shaded cell and each column must contain exactly one shaded cell.
This is equivalent to placing $3$ non-attacking rooks on a $3\times3$ board—one per row and one per column.
Step 2: Interpret as a permutation.
Choose, for each row $i\in\{1,2,3\}$, the column $j$ where its single shaded cell goes.
Because columns cannot repeat, this assignment is a permutation of the three columns.
Step 3: Count the permutations.
Number of permutations of $3$ distinct columns $= 3! = 6$.
\[
\boxed{6}
\]
Let R = {(1, 2), (2, 3), (3, 3)}} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is:
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).

The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
Consider the beam ACDEB given in the figure. Which of the following statements is/are correct:

The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
