1. Calculating the Least Count (LC):
\[1 \, \text{MSD} = \frac{1 \, \text{cm}}{20} = 0.05 \, \text{cm}\]
\[1 \, \text{VSD} = \frac{49}{50} \, \text{MSD} = \frac{49}{50} \times 0.05 \, \text{cm} = 0.049 \, \text{cm}\]
\[\text{LC} = 1 \, \text{MSD} - 1 \, \text{VSD} = 0.05 \, \text{cm} - 0.049 \, \text{cm} = 0.001 \, \text{cm}\]
2. For mark on paper, \( L_1 \):
\[L_1 = 8.45 \, \text{cm} + 26 \times 0.001 \, \text{cm} = 8.45 \, \text{cm} + 0.026 \, \text{cm} = 8.476 \, \text{cm}\]
3. For mark on paper seen through the slab, \( L_2 \):
\[L_2 = 7.12 \, \text{cm} + 41 \times 0.001 \, \text{cm} = 7.12 \, \text{cm} + 0.041 \, \text{cm} = 7.161 \, \text{cm}\]
4. For powder particle on the top surface, \( ZE \):
\[ZE = 4.05 \, \text{cm} + 1 \times 0.001 \, \text{cm} = 4.051 \, \text{cm}\]
5. Calculating the thickness of the slab:
\[\text{actual } L_1 = 8.476 - 4.051 = 4.425 \, \text{cm}\]
\[\text{actual } L_2 = 7.161 - 4.051 = 3.110 \, \text{cm}\]
6. Refractive index \( \mu \):
\[\mu = \frac{L_1}{L_2} = \frac{4.425}{3.110} = 1.42\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).