1. Calculating the Least Count (LC):
\[1 \, \text{MSD} = \frac{1 \, \text{cm}}{20} = 0.05 \, \text{cm}\]
\[1 \, \text{VSD} = \frac{49}{50} \, \text{MSD} = \frac{49}{50} \times 0.05 \, \text{cm} = 0.049 \, \text{cm}\]
\[\text{LC} = 1 \, \text{MSD} - 1 \, \text{VSD} = 0.05 \, \text{cm} - 0.049 \, \text{cm} = 0.001 \, \text{cm}\]
2. For mark on paper, \( L_1 \):
\[L_1 = 8.45 \, \text{cm} + 26 \times 0.001 \, \text{cm} = 8.45 \, \text{cm} + 0.026 \, \text{cm} = 8.476 \, \text{cm}\]
3. For mark on paper seen through the slab, \( L_2 \):
\[L_2 = 7.12 \, \text{cm} + 41 \times 0.001 \, \text{cm} = 7.12 \, \text{cm} + 0.041 \, \text{cm} = 7.161 \, \text{cm}\]
4. For powder particle on the top surface, \( ZE \):
\[ZE = 4.05 \, \text{cm} + 1 \times 0.001 \, \text{cm} = 4.051 \, \text{cm}\]
5. Calculating the thickness of the slab:
\[\text{actual } L_1 = 8.476 - 4.051 = 4.425 \, \text{cm}\]
\[\text{actual } L_2 = 7.161 - 4.051 = 3.110 \, \text{cm}\]
6. Refractive index \( \mu \):
\[\mu = \frac{L_1}{L_2} = \frac{4.425}{3.110} = 1.42\]
To find the refractive index of the glass slab, we need to establish the apparent shift that occurs when viewing through the slab. Let's break this down:
Thus, the correct answer is 1.42.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 

For the circuit shown above, the equivalent gate is:
Find the equivalent resistance between two ends of the following circuit:
The circuit consists of three resistors, two of \(\frac{r}{3}\) in series connected in parallel with another resistor of \(r\).
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process. \text{In the light of the above statements, choose the correct answer from the options given below:}
