It is given that \(\text {TP}\) and \(\text {TQ}\) are tangents.
Therefore, radius drawn to these tangents will be perpendicular to the tangents.
Thus, \(\text {OP ⊥ TP }\) and \(\text {OQ ⊥ TQ}\)
\(∠OPT = 90º\)
\(∠OQT = 90º\)
In quadrilateral \(POQT\),
Sum of all interior angles \(= 360º\)
\(∠OPT + ∠POQ +∠OQT + ∠PTQ = 360º\)
\(⇒ 90º + 110º + 90º + PTQ = 360º\)
\(⇒ PTQ = 70º\)
Hence, the correct option is (B): \(70º\)