
To solve the problem, we need to evaluate the expression \( \sin\left(\frac{A + B}{2}\right) \) in any triangle \( \triangle ABC \).
1. Understanding Angle Sum in a Triangle:
In any triangle, the sum of the interior angles is always:
\( A + B + C = 180^\circ \)
2. Rearranging to Express \( A + B \):
From the above identity, we get:
\( A + B = 180^\circ - C \)
3. Substituting into the Original Expression:
We are asked to find:
\( \sin\left(\frac{A + B}{2}\right) = \sin\left(\frac{180^\circ - C}{2}\right) \)
4. Applying Trigonometric Identity:
We know that:
\( \sin\left(90^\circ - x\right) = \cos(x) \)
Therefore,
\( \sin\left(\frac{180^\circ - C}{2}\right) = \cos\left(\frac{C}{2}\right) \)
Final Answer:
The value of \( \sin\left(\frac{A + B}{2}\right) \) is \( \cos\left(\frac{C}{2}\right) \)
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \). 
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).