Solution:
The current gain \( \beta \) for a common emitter transistor is given by the formula:
\[
\beta = \frac{\Delta I_C}{\Delta I_B}
\]
Where:
\( \Delta I_C = 16 \text{ mA} - 5 \text{ mA} = 11 \text{ mA} \)
\( \Delta I_B = 200 \mu A - 100 \mu A = 100 \mu A \)
Now substitute the values:
\[
\beta = \frac{11 \text{ mA}}{100 \mu A} = \frac{11 \times 10^{-3}}{100 \times 10^{-6}} = 110
\]
Thus, the current gain is \( \boxed{110} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: