Solution:
The current gain \( \beta \) for a common emitter transistor is given by the formula:
\[
\beta = \frac{\Delta I_C}{\Delta I_B}
\]
Where:
\( \Delta I_C = 16 \text{ mA} - 5 \text{ mA} = 11 \text{ mA} \)
\( \Delta I_B = 200 \mu A - 100 \mu A = 100 \mu A \)
Now substitute the values:
\[
\beta = \frac{11 \text{ mA}}{100 \mu A} = \frac{11 \times 10^{-3}}{100 \times 10^{-6}} = 110
\]
Thus, the current gain is \( \boxed{110} \).


Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: