The quantum numbers are defined as follows:
\(n = 4\): Principal quantum number.
\(|m_l| = 1\): Absolute value of the magnetic quantum number.
\(m_s = -\frac{1}{2}\): Spin quantum number.
Step 1: Determine the possible values of \(l\) and \(m_l\)
For \(n = 4\), the possible values of the azimuthal quantum number \(l\) are:
\[l = 0, 1, 2, 3.\]
For each \(l\), the possible values of \(m_l\) are as follows:
\(l = 0\): \(m_l = 0\).
\(l = 1\): \(m_l = -1, 0, +1\).
\(l = 2\): \(m_l = -2, -1, 0, +1, +2\).
\(l = 3\): \(m_l = -3, -2, -1, 0, +1, +2, +3\).
From the given condition \(|m_l| = 1\), the possible values of \(m_l\) are:
\[m_l = -1 \text{ or } +1.\]
Step 2: Count the orbitals corresponding to \(n = 4\) and \(|m_l| = 1\)
For \(l = 1\): \(m_l = \pm1\) (2 orbitals).
For \(l = 2\): \(m_l = \pm1\) (2 orbitals).
For \(l = 3\): \(m_l = \pm1\) (2 orbitals).
The total number of orbitals with \(|m_l| = 1\) is:
\[2 + 2 + 2 = 6 \, \text{orbitals}.\]
Step 3: Assign electrons with \(m_s = -\frac{1}{2}\)
Each orbital can hold one electron with \(m_s = -\frac{1}{2}\). Thus, the total number of electrons is:
\[6 \, \text{electrons}.\]
Final Answer: 6.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: