Given: - 5% of the main current passes through the galvanometer. - The resistance of the galvanometer is \( G \).
The shunt resistance \( S \) is connected in parallel with the galvanometer such that 95% of the main current passes through the shunt. The current division formula for parallel resistances gives:
\[ \frac{I_g}{I} = \frac{S}{S + G} \]
where \( I_g \) is the current through the galvanometer and \( I \) is the total current. Given that:
\[ \frac{I_g}{I} = 0.05 \]
Substituting this value:
\[ 0.05 = \frac{S}{S + G} \]
Rearranging:
\[ 0.05(S + G) = S \] \[ 0.05G = 0.95S \] \[ S = \frac{G}{19} \]
The resistance of the ammeter \( R_a \) is the equivalent resistance of the galvanometer and the shunt connected in parallel:
\[ \frac{1}{R_a} = \frac{1}{G} + \frac{1}{S} \]
Substituting the value of \( S \):
\[ \frac{1}{R_a} = \frac{1}{G} + \frac{19}{G} = \frac{20}{G} \] \[ R_a = \frac{G}{20} \]
Since the resistance values provided in the options differ from this result, it is possible that additional context or conditions may influence the choice of answer.
The problem seems to indicate that the correct answer is marked as a bonus question, suggesting that there may be additional considerations or assumptions needed for a precise determination.
A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: