In an agricultural institute, scientists conduct experiments with varieties of seeds to grow them in different environments for producing healthy plants and obtaining higher yields.
A scientist observed that a particular seed grew very fast after germination. He recorded the growth of the plant from the time of germination and modeled its growth with the function:
Given:
\( f(x) = \frac{1}{3}x^3 - 4x^2 + 15x + 2 \), \( 0 \leq x \leq 10 \)
where \( x \) is the number of days the plant is exposed to sunlight.
On the basis of the above information, answer the following questions:
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is: