In an agricultural institute, scientists conduct experiments with varieties of seeds to grow them in different environments for producing healthy plants and obtaining higher yields.
A scientist observed that a particular seed grew very fast after germination. He recorded the growth of the plant from the time of germination and modeled its growth with the function:
Given:
\( f(x) = \frac{1}{3}x^3 - 4x^2 + 15x + 2 \), \( 0 \leq x \leq 10 \)
where \( x \) is the number of days the plant is exposed to sunlight.
On the basis of the above information, answer the following questions:
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Solve the following LPP graphically: Maximize: \[ Z = 2x + 3y \] Subject to: \[ \begin{aligned} x + 4y &\leq 8 \quad \text{(1)} \\ 2x + 3y &\leq 12 \quad \text{(2)} \\ 3x + y &\leq 9 \quad \text{(3)} \\ x &\geq 0,\quad y \geq 0 \quad \text{(non-negativity constraints)} \end{aligned} \]