Step 1: Write the Half-Reactions for the Redox Process
In acidic medium, \( \text{MnO}_4^- \) is reduced to \( \text{Mn}^{2+} \), and \( \text{NO}_2^- \) is oxidized to \( \text{NO}_3^- \). Let’s write the balanced half-reactions.
Reduction half-reaction (\( \text{MnO}_4^- \)):
\[
\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}
\]
Each \( \text{MnO}_4^- \) gains 5 electrons.
Oxidation half-reaction (\( \text{NO}_2^- \)):
\[
\text{NO}_2^- + \text{H}_2\text{O} \rightarrow \text{NO}_3^- + 2\text{H}^+ + 2\text{e}^-
\]
Each \( \text{NO}_2^- \) loses 2 electrons.
Step 2: Balance the Number of Electrons Transferred
To balance the electrons, find the least common multiple (LCM) of the electrons involved: 5 (from the reduction) and 2 (from the oxidation). The LCM of 5 and 2 is 10.
Multiply the reduction half-reaction by 2 (to involve 10 electrons):
\[
2\text{MnO}_4^- + 16\text{H}^+ + 10\text{e}^- \rightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O}
\]
Multiply the oxidation half-reaction by 5 (to involve 10 electrons):
\[
5\text{NO}_2^- + 5\text{H}_2\text{O} \rightarrow 5\text{NO}_3^- + 10\text{H}^+ + 10\text{e}^-
\]
Step 3: Combine the Half-Reactions
Add the two half-reactions, canceling the electrons:
\[
2\text{MnO}_4^- + 16\text{H}^+ + 5\text{NO}_2^- + 5\text{H}_2\text{O} \rightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O} + 5\text{NO}_3^- + 10\text{H}^+
\]
Simplify by canceling \( 10\text{H}^+ \) on both sides and \( 5\text{H}_2\text{O} \):
\[
2\text{MnO}_4^- + 6\text{H}^+ + 5\text{NO}_2^- \rightarrow 2\text{Mn}^{2+} + 3\text{H}_2\text{O} + 5\text{NO}_3^-
\]
The balanced equation shows that 2 moles of \( \text{MnO}_4^- \) oxidize 5 moles of \( \text{NO}_2^- \).
Step 4: Calculate Moles of \( \text{NO}_2^- \) Oxidized by 10 Moles of \( \text{MnO}_4^- \)
From the balanced equation, the mole ratio of \( \text{MnO}_4^- \) to \( \text{NO}_2^- \) is 2:5.
\[
\text{Moles of } \text{NO}_2^- = 10 \text{ moles of } \text{MnO}_4^- \times \frac{5 \text{ moles of } \text{NO}_2^-}{2 \text{ moles of } \text{MnO}_4^-}
\]
\[
= 10 \times \frac{5}{2} = 10 \times 2.5 = 25 \, \text{moles}
\]
So, 10 moles of \( \text{MnO}_4^- \) oxidize 25 moles of \( \text{NO}_2^- \).
Step 5: Analyze Options
Option (1): 20. Incorrect, as the calculated moles of \( \text{NO}_2^- \) is 25, not 20.
Option (2): 10. Incorrect, as the calculated moles of \( \text{NO}_2^- \) is 25, not 10.
Option (3): 25. Correct, as it matches our calculated number of moles.
Option (4): 15. Incorrect, as the calculated moles of \( \text{NO}_2^- \) is 25, not 15.