In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
\[ I_1 = \frac{I_0}{2}. \]
The path difference is \( \frac{\lambda}{3} \), which corresponds to a phase difference between the two light waves. Since the polarizer \( P_3 \) is at \( 45^\circ \), it ensures that the intensity is maximized for this configuration. Therefore, the resulting intensity after \( P_3 \) is:
\[ I = \frac{I_0}{2}. \]
Final Answer: \( \frac{I_0}{2} \).
A parallel plate capacitor has two parallel plates which are separated by an insulating medium like air, mica, etc. When the plates are connected to the terminals of a battery, they get equal and opposite charges, and an electric field is set up in between them. This electric field between the two plates depends upon the potential difference applied, the separation of the plates and nature of the medium between the plates.