In Young's double slit experiment, the intensity \( I \) at a point is given by the formula: \( I = I_0 \cos^2(\frac{\pi d \sin \theta}{\lambda}) \), where:
Given \( I = \left(\frac{1}{4}\right) I_0 \), we have:
\[ \cos^2\left(\frac{\pi d \sin \theta}{\lambda}\right) = \frac{1}{4} \]
\[ \cos\left(\frac{\pi d \sin \theta}{\lambda}\right) = \frac{1}{2} \]
Thus:
\[ \frac{\pi d \sin \theta}{\lambda} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3} \]
Solving for \( \sin \theta \):
\[ \sin \theta = \frac{\lambda}{3d} \text{ for } \frac{\pi}{3} \text{, or } -\frac{\lambda}{3d} \text{ for } \frac{2\pi}{3} \]
Using the small angle approximation, \( \sin \theta \approx \tan \theta \approx \frac{x}{D} \), where \( x \) is the distance from the central maximum:
\[ \frac{x}{D} = \frac{\lambda}{3d} \]
Thus:
\[ x = \frac{\lambda D}{3d} \]
Substitute \( \lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m} \), \( d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m} \), \( D = 1.0 \, \text{m} \):
\[ x = \frac{600 \times 10^{-9} \times 1.0}{3 \times 1.0 \times 10^{-3}} \]
\[ x = 200 \times 10^{-6} \, \text{m} = 200 \, \mu\text{m} \]
The minimum distance is \( 200 \, \mu\text{m} \), which is within the given range (200,200).
Step 1: Intensity relation The intensity at a point in the interference pattern is given by:
\[ I = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right). \]
Given:
\[ I = \frac{I_0}{4}. \]
Substitute:
\[ \frac{I_0}{4} = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right). \]
Simplify:
\[ \cos^2 \left( \frac{\Delta \phi}{2} \right) = \frac{1}{4}. \]
Taking square root:
\[ \cos \left( \frac{\Delta \phi}{2} \right) = \frac{1}{2}. \]
This implies:
\[ \frac{\Delta \phi}{2} = \frac{\pi}{3}. \]
So:
\[ \Delta \phi = \frac{2\pi}{3}. \]
Step 2: Path difference relation The phase difference \(\Delta \phi\) is related to the path difference by:
\[ \Delta \phi = \frac{2\pi}{\lambda} \times \frac{y d}{D}. \]
Substitute \(\Delta \phi = \frac{2\pi}{3}\):
\[ \frac{2\pi}{3} = \frac{2\pi}{\lambda} \times \frac{y d}{D}. \]
Cancel \(2\pi\):
\[ \frac{1}{3} = \frac{y d}{\lambda D}. \]
Rearrange to solve for \(y\):
\[ y = \frac{\lambda D}{3 d}. \]
Step 3: Substitution of values Substitute \(\lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m}\), \(D = 1.0 \, \text{m}\), and \(d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m}\):
\[ y = \frac{600 \times 10^{-9} \times 1.0}{3 \cdot 1.0 \times 10^{-3}}. \]
Simplify:
\[ y = \frac{600 \times 10^{-9}}{3 \times 10^{-3}} = \frac{600}{3} \times 10^{-6}. \]
\[ y = 200 \times 10^{-6} \, \text{m}. \]
Convert to \(\mu \text{m}\):
\[ y = 200 \, \mu \text{m}. \]
Final Answer: \(y = 200 \, \mu \text{m}\).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 