In Young's double slit experiment, the intensity \( I \) at a point is given by the formula: \( I = I_0 \cos^2(\frac{\pi d \sin \theta}{\lambda}) \), where:
Given \( I = \left(\frac{1}{4}\right) I_0 \), we have:
\[ \cos^2\left(\frac{\pi d \sin \theta}{\lambda}\right) = \frac{1}{4} \]
\[ \cos\left(\frac{\pi d \sin \theta}{\lambda}\right) = \frac{1}{2} \]
Thus:
\[ \frac{\pi d \sin \theta}{\lambda} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3} \]
Solving for \( \sin \theta \):
\[ \sin \theta = \frac{\lambda}{3d} \text{ for } \frac{\pi}{3} \text{, or } -\frac{\lambda}{3d} \text{ for } \frac{2\pi}{3} \]
Using the small angle approximation, \( \sin \theta \approx \tan \theta \approx \frac{x}{D} \), where \( x \) is the distance from the central maximum:
\[ \frac{x}{D} = \frac{\lambda}{3d} \]
Thus:
\[ x = \frac{\lambda D}{3d} \]
Substitute \( \lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m} \), \( d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m} \), \( D = 1.0 \, \text{m} \):
\[ x = \frac{600 \times 10^{-9} \times 1.0}{3 \times 1.0 \times 10^{-3}} \]
\[ x = 200 \times 10^{-6} \, \text{m} = 200 \, \mu\text{m} \]
The minimum distance is \( 200 \, \mu\text{m} \), which is within the given range (200,200).
Step 1: Intensity relation The intensity at a point in the interference pattern is given by:
\[ I = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right). \]
Given:
\[ I = \frac{I_0}{4}. \]
Substitute:
\[ \frac{I_0}{4} = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right). \]
Simplify:
\[ \cos^2 \left( \frac{\Delta \phi}{2} \right) = \frac{1}{4}. \]
Taking square root:
\[ \cos \left( \frac{\Delta \phi}{2} \right) = \frac{1}{2}. \]
This implies:
\[ \frac{\Delta \phi}{2} = \frac{\pi}{3}. \]
So:
\[ \Delta \phi = \frac{2\pi}{3}. \]
Step 2: Path difference relation The phase difference \(\Delta \phi\) is related to the path difference by:
\[ \Delta \phi = \frac{2\pi}{\lambda} \times \frac{y d}{D}. \]
Substitute \(\Delta \phi = \frac{2\pi}{3}\):
\[ \frac{2\pi}{3} = \frac{2\pi}{\lambda} \times \frac{y d}{D}. \]
Cancel \(2\pi\):
\[ \frac{1}{3} = \frac{y d}{\lambda D}. \]
Rearrange to solve for \(y\):
\[ y = \frac{\lambda D}{3 d}. \]
Step 3: Substitution of values Substitute \(\lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m}\), \(D = 1.0 \, \text{m}\), and \(d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m}\):
\[ y = \frac{600 \times 10^{-9} \times 1.0}{3 \cdot 1.0 \times 10^{-3}}. \]
Simplify:
\[ y = \frac{600 \times 10^{-9}}{3 \times 10^{-3}} = \frac{600}{3} \times 10^{-6}. \]
\[ y = 200 \times 10^{-6} \, \text{m}. \]
Convert to \(\mu \text{m}\):
\[ y = 200 \, \mu \text{m}. \]
Final Answer: \(y = 200 \, \mu \text{m}\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: