Step 1: Intensity relation The intensity at a point in the interference pattern is given by:
\[ I = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right). \]
Given:
\[ I = \frac{I_0}{4}. \]
Substitute:
\[ \frac{I_0}{4} = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right). \]
Simplify:
\[ \cos^2 \left( \frac{\Delta \phi}{2} \right) = \frac{1}{4}. \]
Taking square root:
\[ \cos \left( \frac{\Delta \phi}{2} \right) = \frac{1}{2}. \]
This implies:
\[ \frac{\Delta \phi}{2} = \frac{\pi}{3}. \]
So:
\[ \Delta \phi = \frac{2\pi}{3}. \]
Step 2: Path difference relation The phase difference \(\Delta \phi\) is related to the path difference by:
\[ \Delta \phi = \frac{2\pi}{\lambda} \times \frac{y d}{D}. \]
Substitute \(\Delta \phi = \frac{2\pi}{3}\):
\[ \frac{2\pi}{3} = \frac{2\pi}{\lambda} \times \frac{y d}{D}. \]
Cancel \(2\pi\):
\[ \frac{1}{3} = \frac{y d}{\lambda D}. \]
Rearrange to solve for \(y\):
\[ y = \frac{\lambda D}{3 d}. \]
Step 3: Substitution of values Substitute \(\lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m}\), \(D = 1.0 \, \text{m}\), and \(d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m}\):
\[ y = \frac{600 \times 10^{-9} \times 1.0}{3 \cdot 1.0 \times 10^{-3}}. \]
Simplify:
\[ y = \frac{600 \times 10^{-9}}{3 \times 10^{-3}} = \frac{600}{3} \times 10^{-6}. \]
\[ y = 200 \times 10^{-6} \, \text{m}. \]
Convert to \(\mu \text{m}\):
\[ y = 200 \, \mu \text{m}. \]
Final Answer: \(y = 200 \, \mu \text{m}\).
If the monochromatic source in Young's double slit experiment is replaced by white light,
1. There will be a central dark fringe surrounded by a few coloured fringes
2. There will be a central bright white fringe surrounded by a few coloured fringes
3. All bright fringes will be of equal width
4. Interference pattern will disappear