To find how many main scale divisions (MSD) are there in 1 cm of the vernier caliper, we need to use the given data to unravel the relationship between main scale and vernier scale divisions.
Given:
Understanding the calibration of the vernier scale:
Calculating the least count:
Finding main scale divisions per cm:
Calculating how many main scale divisions are in 1 cm:
Thus, there are 20 main scale divisions in 1 cm, making the correct answer 20.
To determine how many main scale divisions there are in 1 cm of the vernier caliper, we need to analyze the provided data and understand the concept of vernier scale and zero error.
The key information given in the problem is as follows:
We want to find the number of main scale divisions per centimeter (1 cm), which is crucial to understanding how the scales are marked in terms of their units.
Let's proceed with the calculations:
Conclusion: There are 20 main scale divisions in 1 cm. Therefore, the correct option is 20.
Match the LIST-I with LIST-II
| LIST-I | LIST-II | ||
| A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
| B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
| C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
| D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.

Which of the following options is correct?