L | R | |
U | 0, 0 | 0, βc |
D | βc, 0 | 1 β c, 1 β c |
A Nash equilibrium occurs when both players are playing best responses to each other.
The two Nash equilibria are:
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
Player Y | ||
---|---|---|
C | NC | |
Player X | X: 50, Y: 50 | X: 40, Y: 30 |
X: 30, Y: 40 | X: 20, Y: 20 |