Question:

In a triangle $ABC$, $\left(\tan \dfrac{A}{2} \tan \dfrac{B}{2} \tan \dfrac{C}{2} \right)^2 \le$

Show Hint

Use equality case of triangle angle means for maximum/minimum value trigonometric inequalities.
Updated On: May 19, 2025
  • $\dfrac{1}{27}$
  • $\dfrac{1}{18}$
  • $\dfrac{1}{9}$
  • $\dfrac{1}{3}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

In any triangle $ABC$, maximum value of product $\tan \dfrac{A}{2} \tan \dfrac{B}{2} \tan \dfrac{C}{2}$ is obtained when $A = B = C = \dfrac{\pi}{3}$
Then: $\tan \dfrac{\pi}{6} = \dfrac{1}{\sqrt{3}}$
So: $\left(\dfrac{1}{\sqrt{3}} \cdot \dfrac{1}{\sqrt{3}} \cdot \dfrac{1}{\sqrt{3}}\right)^2 = \left(\dfrac{1}{3\sqrt{3}}\right)^2 = \dfrac{1}{27}$
Was this answer helpful?
0
0