In any triangle $ABC$, maximum value of product $\tan \dfrac{A}{2} \tan \dfrac{B}{2} \tan \dfrac{C}{2}$ is obtained when $A = B = C = \dfrac{\pi}{3}$
Then: $\tan \dfrac{\pi}{6} = \dfrac{1}{\sqrt{3}}$
So: $\left(\dfrac{1}{\sqrt{3}} \cdot \dfrac{1}{\sqrt{3}} \cdot \dfrac{1}{\sqrt{3}}\right)^2 = \left(\dfrac{1}{3\sqrt{3}}\right)^2 = \dfrac{1}{27}$