Using the identity in a triangle: $a^2 = b^2 + c^2 - 2bc\cos A$
Similarly, $b^2 = a^2 + c^2 - 2ac\cos B$, and $c^2 = a^2 + b^2 - 2ab\cos C$
Adding the negatives:
$-2(bc\cos A + ac\cos B + ab\cos C) = -(a^2 + b^2 + c^2 - a^2 - b^2 - c^2) = - (a^2 + b^2 + c^2 - a^2 - b^2 - c^2) = 0$
Hence, $2(bc\cos A + ac\cos B + ab\cos C) = a^2 + b^2 + c^2$