Question:

In a triangle $ABC$, $2(bc \cos A + ac \cos B + ab \cos C) =$

Show Hint

Combine cosine law identities to simplify cyclic trigonometric expressions in triangle geometry.
Updated On: May 19, 2025
  • $a + b + c$
  • $2(a + b + c)$
  • $a^2 + b^2 + c^2$
  • $2(a^2 + b^2 + c^2)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Using the identity in a triangle: $a^2 = b^2 + c^2 - 2bc\cos A$
Similarly, $b^2 = a^2 + c^2 - 2ac\cos B$, and $c^2 = a^2 + b^2 - 2ab\cos C$
Adding the negatives: $-2(bc\cos A + ac\cos B + ab\cos C) = -(a^2 + b^2 + c^2 - a^2 - b^2 - c^2) = - (a^2 + b^2 + c^2 - a^2 - b^2 - c^2) = 0$
Hence, $2(bc\cos A + ac\cos B + ab\cos C) = a^2 + b^2 + c^2$
Was this answer helpful?
0
0