In a trapezium, the diagonals \( AC \) and \( BD \) divide each other in the same ratio as the parallel sides.
Given \( AB : CD = 2 : 1 \), the diagonals \( AC \) and \( BD \) will divide each other in the same ratio.
Hence, the ratio of the areas of the triangles \( \triangle CPD \) and \( \triangle APB \) is also \( 1 : 4 \), because the area of a triangle is proportional to the base when the height is the same.
The correct answer is option (A): \(1:4\)
In the following figure \(\angle\)MNP = 90\(^\circ\), seg NQ \(\perp\) seg MP, MQ = 9, QP = 4, find NQ. 
Solve the following sub-questions (any four): In \( \triangle ABC \), \( DE \parallel BC \). If \( DB = 5.4 \, \text{cm} \), \( AD = 1.8 \, \text{cm} \), \( EC = 7.2 \, \text{cm} \), then find \( AE \). 
In the following figure, XY \(||\) seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.
Activity:
2AX = 3BX (Given)
\[\therefore \frac{AX}{BX} = \frac{3}{\boxed{2}} \ \\ \frac{AX + BX}{BX} = \frac{3 + 2}{2} \quad \text{(by componendo)} \ \\ \frac{BA}{BX} = \frac{5}{2} \quad \dots \text{(I)} [6pt] \\ \text{Now } \triangle BCA \sim \triangle BYX ; (\boxed{\text{AA}} \text{ test of similarity}) [4pt] \\ \therefore \frac{BA}{BX} = \frac{AC}{XY} \quad \text{(corresponding sides of similar triangles)} [4pt] \\ \frac{5}{2} = \frac{AC}{9} \quad \text{from (I)} [4pt] \\ \therefore AC = \boxed{22.5}\]