\( F = \frac{1}{2} \rho (v_1^2 - v_2^2)A \)
- Where: - \(\rho = 1.2 \, \text{kg/m}^3\) - \(v_1 = 70 \, \text{m/s}\) - \(v_2 = 65 \, \text{m/s}\) - \(A = 2 \, \text{m}^2\)
\( F = \frac{1}{2} \times 1.2 \times (70^2 - 65^2) \times 2 \)
\( F = \frac{1}{2} \times 1.2 \times (4900 - 4225) \times 2 \)
\( F = \frac{1}{2} \times 1.2 \times 675 \times 2 \)
\( F = 810 \, \text{N} \)
So, the correct answer is: \( F = 810 \, \text{N} \)
Step 1: Apply Bernoulli’s principle.
Pressure difference between lower and upper surfaces: \[ P_1 - P_2 = \frac{1}{2}\rho (v_2^2 - v_1^2) \] where \( v_1 = 65\,\text{m/s} \) (lower surface), \( v_2 = 70\,\text{m/s} \) (upper surface), and \( \rho = 1.2\,\text{kg/m}^3 \).
\[ P_1 - P_2 = \frac{1}{2} \times 1.2 \times (70^2 - 65^2) \] \[ = 0.6 \times (4900 - 4225) = 0.6 \times 675 = 405\,\text{N/m}^2 \]
Lift = Pressure difference × Area \[ F = (P_1 - P_2) \times A = 405 \times 2 = 810\,\text{N} \]
\[ \boxed{F = 810\,\text{N}} \]
A flexible chain of mass $m$ is hanging as shown. Find tension at the lowest point. 

Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
