To find the width of the slit in a single slit diffraction pattern, we can use the formula for the position of minima: \(a \sin \theta = n\lambda\), where \(a\) is the slit width, \(\theta\) is the diffraction angle, \(n\) is the order of the minima, and \(\lambda\) is the wavelength of light. For small angles, \(\sin \theta \approx \tan \theta = \frac{y}{D}\), where \(y\) is the distance of the minima from the central maximum on the screen, and \(D\) is the distance from the slit to the screen.
The distance between the first (\(n=1\)) and third (\(n=3\)) minima is given as 3 mm. Using the positions of the minima: \(y_1 = \frac{\lambda D}{a}\) and \(y_3 = \frac{3\lambda D}{a}\).
The difference is: \(y_3 - y_1 = \frac{3\lambda D}{a} - \frac{\lambda D}{a} = \frac{2\lambda D}{a}\).
Equating this to the given distance: \(\frac{2\lambda D}{a} = 3 \, \text{mm} = 0.003 \, \text{m}\).
Substitute \( \lambda = 6000 \, \text{Å} = 6000 \times 10^{-10} \, \text{m}\) and \(D = 50 \, \text{cm} = 0.5 \, \text{m}\):
\(a = \frac{2 \cdot 6000 \times 10^{-10} \cdot 0.5}{0.003}\).
\(a = \frac{6000 \times 10^{-10}}{0.003} = 2 \times 10^{-4} \, \text{m}\).
Thus, the width of the slit is \(2 \times 10^{-4} \, \text{m}\), fitting well within the specified range [2,2].

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: