Let y denote the number of bacteria at any instant t . then according to the question
$\frac{dy}{dt } \alpha y \Rightarrow \frac{dy}{y} = k dt $ ......(i)
k is the constant of proportionality, taken to be + ve on integrating (i), we get
$\log y = kt + c$ ....(ii)
c is a parameter. let $y_0$ be the initial number of bacteria
i.e., at $t = 0$ using this in (ii), $c = \log \, y_0$
$\Rightarrow \log \, y = kt + \log \, y_{0}$
$ \Rightarrow\log \frac{y}{y_{0}} = kt$ .....(iii)
$ y = \left(y_{0} + \frac{10}{100} y_{0}\right) = \frac{11y_{0}}{10}, t = 2 $
So, from (iii) , we get $\log \frac{\frac{11y_{0}}{10}}{y_{0}} = k \left(2\right) $
$ \Rightarrow k = \frac{1}{2} \log \frac{11}{10}$ .........(iv)
Using (iv) in (iii) $ \log \frac{y}{y_{0} } = \frac{1}{2} \left(\log \frac{11}{10}\right)t $
let the number of bacteria become $1, 00, 000$ to $2,00,000 $ in $t_1$ hours. i.e., $y = 2y_0$
when $t = t_1 $ hours. from (v)
$ \log \frac{2y_{0}}{y_{0}} = \frac{1}{2} \left(\log \frac{11}{10}\right)t_{1} \Rightarrow t_{1} = \frac{2\log 2}{\log \frac{11}{10}}$
Hence, the reqd. no. of hours $ = \frac{ 2\log 2}{\log \frac{11}{10}} $