In a ballistic galvanometer, \( \theta_0 \) be the throw in the absence of damping and \( \theta_1 \) be the first throw after \( \frac{T}{4} \) sec (where \( T \) is the time period of oscillations). The correct relation between \( \theta_0 \), \( \theta_1 \) & logarithmic decrement \( \lambda \) of the galvanometer will be:
Show Hint
Damping causes an exponential decay in oscillations:
\[
\theta_n = \theta_0 e^{-n\lambda}
\]
The damping in a ballistic galvanometer follows an exponential decay:
\[
\theta_n = \theta_0 e^{-n\lambda}
\]
For the first throw \( \theta_1 \) after \( \frac{T}{4} \):
\[
\theta_1 = \theta_0 e^{-\lambda/2}
\]