If \(z = x + iy\), then the equation \(|z + 1| = |z - 1|\) represents
Let \(z = x + iy\). The given equation is \(|z + 1| = |z - 1|\).
Substituting \(z = x + iy\), we get \(|x + iy + 1| = |x + iy - 1|\).
\(|(x+1) + iy| = |(x-1) + iy|\)
Taking the magnitude of both sides gives: \(\sqrt{(x+1)^2 + y^2} = \sqrt{(x-1)^2 + y^2}\)
Squaring both sides: \((x+1)^2 + y^2 = (x-1)^2 + y^2\)
\(x^2 + 2x + 1 + y^2 = x^2 - 2x + 1 + y^2\)
\(2x = -2x\)
\(4x = 0\)
\(x = 0\)
This represents the y-axis.
Answer: (D) y-axis
We have:
$$ |z + 1| = |z - 1| \implies |x + iy + 1| = |x + iy - 1|. $$Simplify each modulus:
$$ |(x+1) + iy| = |(x-1) + iy| \implies \sqrt{(x+1)^2 + y^2} = \sqrt{(x-1)^2 + y^2}. $$Square both sides:
$$ (x+1)^2 + y^2 = (x-1)^2 + y^2. $$Expand and simplify:
$$ x^2 + 2x + 1 + y^2 = x^2 - 2x + 1 + y^2 \implies 4x = 0 \implies x = 0. $$This represents the y-axis.
Final Answer: The final answer is $ {\text{y-axis}} $.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is: