If \(z = x + iy\), then the equation \(|z + 1| = |z - 1|\) represents
Let \(z = x + iy\). The given equation is \(|z + 1| = |z - 1|\).
Substituting \(z = x + iy\), we get \(|x + iy + 1| = |x + iy - 1|\).
\(|(x+1) + iy| = |(x-1) + iy|\)
Taking the magnitude of both sides gives: \(\sqrt{(x+1)^2 + y^2} = \sqrt{(x-1)^2 + y^2}\)
Squaring both sides: \((x+1)^2 + y^2 = (x-1)^2 + y^2\)
\(x^2 + 2x + 1 + y^2 = x^2 - 2x + 1 + y^2\)
\(2x = -2x\)
\(4x = 0\)
\(x = 0\)
This represents the y-axis.
Answer: (D) y-axis