Given \(z = x+iy\) and \(x^2+y^2=1\).
The condition \(x^2+y^2=1\) implies \(|z|^2=1\), so \(|z|=1\).
Since \(|z|=1\), we know that \(z\bar{z} = |z|^2 = 1\), which gives \( \bar{z} = \frac{1}{z} \) (for \(z \neq 0\)).
The expression is \( E = \frac{1+x+iy}{1+x-iy} \).
Substitute \(x+iy = z\) and \(x-iy = \bar{z}\):
\[ E = \frac{1+z}{1+\bar{z}} \]
Now substitute \(\bar{z} = \frac{1}{z}\) into the expression for \(E\):
\[ E = \frac{1+z}{1+\frac{1}{z}} \]
To simplify the denominator: \(1+\frac{1}{z} = \frac{z}{z} + \frac{1}{z} = \frac{z+1}{z}\).
So,
\[ E = \frac{1+z}{\frac{z+1}{z}} \]
Assuming \(1+z \neq 0\) (i.
e.
, \(z \neq -1\)), we can multiply by the reciprocal of the denominator:
\[ E = (1+z) \cdot \frac{z}{z+1} \]
\[ E = z \]
This identity holds for all \(z\) such that \(|z|=1\) and \(z \neq -1\).
\[ \boxed{z} \]