Question:

If \(\frac{z}{i}=11-13i\), then \(z+\bar z\) is equal to

Updated On: Apr 4, 2025
  • -22
  • 22
  • 25
  • 26
  • -26
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given \(\frac{z}{i} = 11 - 13i\), and we need to find \(z + \bar{z}\).

First, multiply both sides of the equation by \(i\) to find \(z\)

\(z = i(11 - 13i)\)

Now, distribute \(i\):

\(z = 11i - 13i^2\)

Since \(i^2 = -1\), we have:

\(z = 11i + 13\)

Now, we find \(\bar{z}\), the conjugate of \(z\):

\(\bar{z} = 13 - 11i\)

Now, calculate \(z + \bar{z}\):

\(z + \bar{z} = (13 + 11i) + (13 - 11i) = 13 + 13 = 26\)

The answer is 26.

Was this answer helpful?
0
2