We are given \(z = 2 - i\sqrt{3}\), and we need to find \(|z^4|\).
First, find the modulus of \(z\). The modulus of a complex number \(z = a + bi\) is given by:
\(|z| = \sqrt{a^2 + b^2}\)
For \(z = 2 - i\sqrt{3}\), we have \(a = 2\) and \(b = -\sqrt{3}\).
Thus, the modulus of \(z\) is:
\(|z| = \sqrt{2^2 + (-\sqrt{3})^2} = \sqrt{4 + 3} = \sqrt{7}\)
Now, use the property of moduli: \(|z^n| = |z|^n\) for any integer \(n\).
Therefore, \(|z^4| = |z|^4\).
We already know that \(|z| = \sqrt{7} \), s\)
\(|z^4| = (\sqrt{7})^4 = 7^2 = 49\)
The answer is 49.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is: