Question:

If \( Z_1 = \sqrt{3} + i\sqrt{3} \) and \( Z_2 = \sqrt{3} + i \), and \[ \left( \frac{Z_1}{Z_2} \right)^{50} = x + iy, \] then the point \( (x,y) \) lies in:

Show Hint

To determine the quadrant of a complex number, analyze its real and imaginary parts. If both are positive, the number lies in the first quadrant.
Updated On: Mar 15, 2025
  • first quadrant
  • second quadrant
  • third quadrant
  • fourth quadrant 
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


We are given the complex numbers: \[ Z_1 = \sqrt{3} + i\sqrt{3}, \quad Z_2 = \sqrt{3} + i. \]

 Step 1: Compute \( \frac{Z_1}{Z_2} \) 
Dividing \( Z_1 \) by \( Z_2 \): \[ \frac{Z_1}{Z_2} = \frac{\sqrt{3} + i\sqrt{3}}{\sqrt{3} + i}. \] Multiply the numerator and denominator by the conjugate of the denominator \( \sqrt{3} - i \): \[ \frac{(\sqrt{3} + i\sqrt{3})(\sqrt{3} - i)}{(\sqrt{3} + i)(\sqrt{3} - i)}. \] The denominator simplifies as: \[ (\sqrt{3} + i)(\sqrt{3} - i) = 3 - (-1) = 4. \] Expanding the numerator: \[ \sqrt{3} \cdot \sqrt{3} - \sqrt{3} \cdot i + i\sqrt{3} \cdot \sqrt{3} - i\sqrt{3} \cdot i. \] \[ = 3 - \sqrt{3} i + 3i - \sqrt{3} (-1). \] \[ = 3 - \sqrt{3} i + 3i + \sqrt{3}. \] \[ = (3 + \sqrt{3}) + (-\sqrt{3} + 3)i. \] Dividing by 4: \[ \frac{Z_1}{Z_2} = \frac{3+\sqrt{3}}{4} + i \frac{3-\sqrt{3}}{4}. \] 

Step 2: Compute \( \left( \frac{Z_1}{Z_2} \right)^{50 \)} 
Since \( \frac{Z_1}{Z_2} \) has a positive real part and a positive imaginary part, raising it to any power will still lie in the first quadrant. 

Step 3: Conclusion 
Thus, the point \( (x,y) \) lies in: \[ \boxed{\text{First Quadrant}}. \]

Was this answer helpful?
0
0