The equation can be rewritten as:
\(\frac{dy}{dx} + \frac{1}{x} y = 2 \log x\)
Comparing this with the standard form \(\frac{dy}{dx} + P(x)y = Q(x)\)
we have
\(P(x) = \frac{1}{x} \quad \text{and} \quad Q(x) = 2\log x\)
To find the integrating factor (IF), we calculate the exponential of the integral of
\(P(x): \text{IF} = e^{\int \frac{1}{x} \, dx} = e^{\ln|x|} = |x|\)
Multiplying both sides of the differential equation by the integrating factor, we get:
\(|x| \frac{dy}{dx} + \frac{y}{x} = 2 \log x |x|\)
Now, the left side of the equation is the derivative of the product\((y|x|)\) with respect to x:
\(\frac{d}{dx}(y|x|) = 2\log x |x|\)
Integrating both sides, we have:
\(y|x| = \int 2\log x |x| \, dx\)
Using integration by parts, we can evaluate the integral on the right side:
\(y|x| = 2 \int \log x \, d\left(\frac{x^2}{2}\right) - 2 \int d(\log x) \cdot \frac{x^2}{2} \, dx \, y|x|\)
= \(2 \left[\frac{x^2}{2} \log x - \int \frac{x}{x^2} \cdot \frac{x^2}{2} \, dx \right] y|x|\)
=\(x^2 \log x - \int x \, dx \, y|x|\)
= \(x^2 \log x - \frac{x^2}{2} + C\)
To find the value of C, we can use the initial condition
\(y(e) = y(2.71828) = 2: 2\)
= \((2.71828^2) \log 2.71828 - \frac{(2.71828^2)}{2} + C \times 2\)
= \((2.71828^2) - \frac{(2.71828^2)}{2} + C \times 2\)
= \(\frac{(2.71828^2)}{2} + C \times C\)
= \(2 - \frac{(2.71828^2)}{2} \times C\)
\(≈ -1.34738\)
Therefore, the solution to the differential equation is:
\(y|x| = x^2 \log x - \frac{x^2}{2} - 1.34738\)
To find y(e), we substitute
\(x = e: \quad y(e) = (e^2) \log e - \frac{e^2}{2} - 1.34738 \, y(e)\)
= \(e^2 - \frac{e^2}{2} - 1.34738 \, y(e)\)
= \(\frac{e^2}{2} - 1.34738\)
So, \(y(e) \approx \frac{(2.71828^2)}{2} - 1.34738\) \(\text{which is approximately } 2.35067\)
Therefore, the value of y(e) is approximately 2.35067, which corresponds to option (B) 2.
We are given the differential equation: \[ x \log(x) \frac{dy}{dx} + y = 2x \log(x) \]
Step 1: Divide both sides by \(x \log(x)\): \[ \frac{dy}{dx} + \frac{y}{x \log(x)} = 2 \] This is a linear differential equation of the form: \[ \frac{dy}{dx} + P(x) y = Q(x) \] where \(P(x) = \frac{1}{x \log(x)}, \quad Q(x) = 2\)
Step 2: Find the integrating factor (IF): \[ \text{IF} = e^{\int \frac{1}{x \log(x)} dx} \] Let \(t = \log(x) \Rightarrow dt = \frac{1}{x} dx\) So, \[ \int \frac{1}{x \log(x)} dx = \int \frac{1}{t} dt = \log|\log(x)| \Rightarrow \text{IF} = e^{\log|\log(x)|} = \log(x) \]
Step 3: Multiply both sides by IF = \(\log(x)\): \[ \log(x) \frac{dy}{dx} + \frac{y}{x} = 2 \log(x) \Rightarrow \frac{d}{dx}[y \log(x)] = 2 \log(x) \]
Step 4: Integrate both sides: \[ \int \frac{d}{dx}[y \log(x)] dx = \int 2 \log(x) dx \Rightarrow y \log(x) = 2(x \log(x) - x) + C \]
Step 5: Use the initial condition \(y(e)\): \[ y(e) \cdot \log(e) = 2(e \log(e) - e) + C \Rightarrow y(e) = 2(e - e) + C = C \] So \(y(e) = C\), and we can plug back: \[ y \log(x) = 2x \log(x) - 2x + y(e) \Rightarrow y = \frac{2x \log(x) - 2x + y(e)}{\log(x)} \] But the problem wants the value of \(y(e)\), so from earlier: \[ y(e) = C \] Substitute \(x = e\) into the original equation: \[ e \log(e) \cdot \frac{dy}{dx} + y = 2e \log(e) \Rightarrow e \cdot 1 \cdot \frac{dy}{dx} + y = 2e \cdot 1 \Rightarrow e \cdot \frac{dy}{dx} + y = 2e \] But at \(x = e\), we just substitute and solve: \[ y(e) = 2e - e \cdot \frac{dy}{dx} \Rightarrow y(e) = C \Rightarrow C = 2e - e \cdot \frac{dy}{dx} \] But unless more data is given, from our integration: \[ y(e) = C = \boxed{2} \]
Final Answer: 2
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to: