The given function is: \[ y = (\tan x)^x. \]
Take the natural logarithm on both sides to simplify the power: \[ \ln y = x \ln (\tan x). \]
Differentiate both sides with respect to \(x\): \[ \frac{1}{y} \cdot \frac{dy}{dx} = \ln (\tan x) + x \cdot \frac{1}{\tan x} \cdot \sec^2 x. \]
Simplify: \[ \frac{1}{y} \cdot \frac{dy}{dx} = \ln (\tan x) + x \cdot \frac{\sec^2 x}{\tan x}. \]
Multiply through by \(y = (\tan x)^x\): \[ \frac{dy}{dx} = (\tan x)^x \left[\ln (\tan x) + x \cdot \frac{\sec^2 x}{\tan x}\right]. \]
Simplify further: \[ \frac{dy}{dx} = (\tan x)^x \left[\ln (\tan x) + x \cdot \frac{1}{\sin x \cos x}\right]. \]
Final answer: \[ \frac{dy}{dx} = (\tan x)^x \left[\ln (\tan x) + x \cdot \csc x \sec x\right]. \]
Balance Sheet of Madhavan, Chatterjee and Pillai as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Creditors | 1,10,000 | Cash at Bank | 4,05,000 |
| Outstanding Expenses | 17,000 | Stock | 2,20,000 |
| Mrs. Madhavan’s Loan | 2,00,000 | Debtors | 95,000 |
| Chatterjee’s Loan | 1,70,000 | Less: Provision for Doubtful Debts | (5,000) |
| Capitals: | Madhavan – 2,00,000 | Land and Building | 1,82,000 |
| Chatterjee – 1,00,000 | Plant and Machinery | 1,00,000 | |
| Pillai – 2,00,000 | |||
| Total | 9,97,000 | Total | 9,97,000 |

