Question:

A 1 cm segment of a wire lying along the x-axis carries a current of 0.5 A along the \( +x \)-direction. A magnetic field \( \vec{B} = (0.4 \, \text{mT} \hat{j}) + (0.6 \, \text{mT} \hat{k}) \) is switched on. The force acting on the segment is:

Show Hint

The force on a current-carrying conductor in a magnetic field is given by \( \vec{F} = I L \vec{B} \times \hat{l} \), where \( \hat{l} \) is the unit vector along the wire direction.
Updated On: Jun 16, 2025
  • \( (2 \hat{i} + 3 \hat{k}) \, \text{mN} \)
  • \( (-3 \hat{j} + 2 \hat{k}) \, \mu\text{N} \)
  • \( (6 \hat{j} + 4 \hat{k}) \, \text{mN} \)
  • \( (-4 \hat{j} + 6 \hat{k}) \, \mu\text{N} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To find the force acting on a current-carrying wire placed in a magnetic field, we use the formula for the magnetic force on a current segment: \(\vec{F} = I (\vec{L} \times \vec{B})\). 

Given:

  • Current, \(I = 0.5 \, \text{A}\)
  • Length of the wire, \(L = 1 \, \text{cm} = 0.01 \, \text{m}\)
  • Direction along \(+x\), so \(\vec{L} = 0.01 \, \hat{i}\, \text{m}\)
  • Magnetic field, \(\vec{B} = (0.4 \, \text{mT} \hat{j}) + (0.6 \, \text{mT} \hat{k})\)
  • Convert \(\text{mT}\) to \(\text{T}\): \(1 \, \text{mT} = 10^{-3} \, \text{T}\)
  • Thus, \(\vec{B} = (0.4 \times 10^{-3} \hat{j} + 0.6 \times 10^{-3} \hat{k}) \, \text{T}\)

The cross product \(\vec{L} \times \vec{B}\) is:

\(\vec{L} \times \vec{B} = (0.01 \, \hat{i}) \times [(0.4 \times 10^{-3} \hat{j}) + (0.6 \times 10^{-3} \hat{k})]\)

The cross products are:

\((\hat{i} \times \hat{j}) = \hat{k}\)

\((\hat{i} \times \hat{k}) = -\hat{j}\)

So,

\(\vec{L} \times \vec{B} = 0.01 \{(0.4 \times 10^{-3}) \hat{k} - (0.6 \times 10^{-3}) \hat{j}\}\)

\(\vec{L} \times \vec{B} = (0.4 \times 10^{-5} \hat{k} - 0.6 \times 10^{-5} \hat{j})\)

Now, compute \(\vec{F} = I (\vec{L} \times \vec{B})\):

\(\vec{F} = 0.5 (0.4 \times 10^{-5} \hat{k} - 0.6 \times 10^{-5} \hat{j})\)

\(\vec{F} = (0.2 \times 10^{-5} \hat{k} - 0.3 \times 10^{-5} \hat{j})\)

\(\vec{F} = (2 \hat{k} - 3 \hat{j}) \times 10^{-6} \text{N}\)

Expressing in \(\mu\text{N}\):

\(\vec{F} = (-3 \hat{j} + 2 \hat{k}) \, \mu\text{N}\)

The force acting on the segment is \( (-3 \hat{j} + 2 \hat{k}) \, \mu\text{N} \).

Was this answer helpful?
1
0

Top Questions on Magnetic Force on a Current-Carrying Wire