To find the force acting on a current-carrying wire placed in a magnetic field, we use the formula for the magnetic force on a current segment: \(\vec{F} = I (\vec{L} \times \vec{B})\).
Given:
The cross product \(\vec{L} \times \vec{B}\) is:
\(\vec{L} \times \vec{B} = (0.01 \, \hat{i}) \times [(0.4 \times 10^{-3} \hat{j}) + (0.6 \times 10^{-3} \hat{k})]\)
The cross products are:
\((\hat{i} \times \hat{j}) = \hat{k}\)
\((\hat{i} \times \hat{k}) = -\hat{j}\)
So,
\(\vec{L} \times \vec{B} = 0.01 \{(0.4 \times 10^{-3}) \hat{k} - (0.6 \times 10^{-3}) \hat{j}\}\)
\(\vec{L} \times \vec{B} = (0.4 \times 10^{-5} \hat{k} - 0.6 \times 10^{-5} \hat{j})\)
Now, compute \(\vec{F} = I (\vec{L} \times \vec{B})\):
\(\vec{F} = 0.5 (0.4 \times 10^{-5} \hat{k} - 0.6 \times 10^{-5} \hat{j})\)
\(\vec{F} = (0.2 \times 10^{-5} \hat{k} - 0.3 \times 10^{-5} \hat{j})\)
\(\vec{F} = (2 \hat{k} - 3 \hat{j}) \times 10^{-6} \text{N}\)
Expressing in \(\mu\text{N}\):
\(\vec{F} = (-3 \hat{j} + 2 \hat{k}) \, \mu\text{N}\)
The force acting on the segment is \( (-3 \hat{j} + 2 \hat{k}) \, \mu\text{N} \).
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?