Let:
\[
y = \tan(3\tan^{-1} x)
\]
We know:
\[
\tan(3\tan^{-1} x) = \frac{3x - x^3}{1 - 3x^2} \Rightarrow y = \frac{3x - x^3}{1 - 3x^2}
\]
Let’s denote \( y = \frac{u(x)}{v(x)} \), where:
- \( u(x) = 3x - x^3 \)
- \( v(x) = 1 - 3x^2 \)
Compute first derivative using quotient rule:
\[
\frac{dy}{dx} = \frac{v \cdot u' - u \cdot v'}{v^2}
\]
Then compute second derivative \( \frac{d^2y}{dx^2} \), plug into:
\[
(1 - 3x^2)\frac{d^2y}{dx^2} - 12x \frac{dy}{dx}
\]
After simplification, we get:
\[
= 6(y - x)
\]