1. The given function is:
\[ y = \tan^{-1} \left[ \frac{\log_e \left(\frac{e}{x^2}\right)}{\log_e(e x^2)} \right] + \tan^{-1} \left[ \frac{3 + 2 \log_e x}{1 - 6 \cdot \log_e x} \right]. \]
2. Simplify the first term:
\[ \tan^{-1} \left[ \frac{\log_e \left(\frac{e}{x^2}\right)}{\log_e(e x^2)} \right] = \tan^{-1} \left[ \frac{\log_e e - 2 \log_e x}{\log_e e + 2 \log_e x} \right]. \]
Substitute \(\log_e e = 1\):
\[ = \tan^{-1} \left[ \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right]. \]
3. Simplify the second term:
\[ \tan^{-1} \left[ \frac{3 + 2 \log_e x}{1 - 6 \cdot \log_e x} \right]. \]
4. Differentiate \(y\) with respect to \(x\):
For \(\tan^{-1}(u)\), the derivative is:
\[ \frac{d}{dx} \tan^{-1}(u) = \frac{u'}{1 + u^2}. \]
5. Compute \(\frac{dy}{dx}\) for each term:
- For the first term:
\[ u = \frac{1 - 2 \log_e x}{1 + 2 \log_e x}, \quad u' = \frac{-2/x}{(1 + 2 \log_e x)^2}. \]
Thus:
\[ \frac{d}{dx} \tan^{-1} \left[ \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right] = \frac{-2/x}{(1 + 2 \log_e x)^2} \cdot \frac{1}{1 + \left( \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right)^2}. \]
- For the second term, differentiate similarly using:
\[ u = \frac{3 + 2 \log_e x}{1 - 6 \cdot \log_e x}, \quad u' = \frac{2/x (1 - 6 \cdot \log_e x) - (3 + 2 \log_e x)(-6/x)}{(1 - 6 \cdot \log_e x)^2}. \]
6. After simplifications, it is observed that the higher-order terms cancel out, and:
\[ \frac{d^2 y}{dx^2} = 0. \]
Thus, the correct answer is (C).