Question:

If \( y = \operatorname{Sin}^{-1} \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \) and \( -\frac{3\pi}{2}<x<-\frac{\pi}{2} \), then \( \frac{dy}{dx} \) is:

Show Hint

For inverse trigonometric derivatives, express the argument in terms of fundamental trigonometric identities before differentiating.
Updated On: Jun 5, 2025
  • \( -\frac{\sqrt{\operatorname{cosec}\frac{x}{2}}}{2\sqrt{\sin^2\frac{x}{2}-\cos^2\frac{x}{2}}} \)
  • \( \frac{|\sec\frac{x}{2}|}{2\sqrt{\cos x}} \)
  • \( \frac{|\cos\frac{x}{2}|}{2\sqrt{\cos x}} \)
  • \( \frac{\cos x}{2\sqrt{\cos x}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Rewriting the given function: \[ y = \operatorname{Sin}^{-1} \left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) \] Using trigonometric simplifications, \[ y = \operatorname{Sin}^{-1}(\sec(x/2)) \] Differentiating: \[ \frac{dy}{dx} = \frac{|\sec(x/2)|}{2\sqrt{\cos x}} \] Thus, the correct answer is: \[ \frac{|\sec\frac{x}{2}|}{2\sqrt{\cos x}} \]
Was this answer helpful?
0
0