Define:
\[
y = \log(\sec(\tan^{-1}x))
\]
Using the identity:
\[
\sec(\tan^{-1}x) = \sqrt{1 + x^2}
\]
Thus,
\[
y = \log(\sqrt{1+x^2})
\]
Rewriting:
\[
y = \frac{1}{2} \log(1 + x^2)
\]
Differentiating:
\[
\frac{dy}{dx} = \frac{1}{2} \times \frac{2x}{1 + x^2} = \frac{x}{1 + x^2}
\]
Substituting \( x = 1 \):
\[
\frac{dy}{dx} = \frac{1}{1 + 1^2} = \frac{1}{2}
\]
Thus, the correct answer is:
\[
\frac{1}{2}
\]