\(\left(\frac{13}{7}\right)-\left(\frac{\pi }{2}\right)+\ln (5)\)
\(\left(\frac{15}{7}\right)+\left(\frac{\pi }{3}\right)+\ln (2)\)
\(\left(\frac{17}{8}\right)+\left(\frac{\pi }{6}\right)-\ln (2)\)
\(\left(\frac{18}{7}\right)-\left(\frac{\pi }{6}\right)+\ln (3)\)
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: