\(\left(\frac{13}{7}\right)-\left(\frac{\pi }{2}\right)+\ln (5)\)
\(\left(\frac{15}{7}\right)+\left(\frac{\pi }{3}\right)+\ln (2)\)
\(\left(\frac{17}{8}\right)+\left(\frac{\pi }{6}\right)-\ln (2)\)
\(\left(\frac{18}{7}\right)-\left(\frac{\pi }{6}\right)+\ln (3)\)
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is:
Let $[r]$ denote the largest integer not exceeding $r$, and the roots of the equation $ 3z^2 + 6z + 5 + \alpha(x^2 + 2x + 2) = 0 $ are complex numbers whenever $ \alpha > L $ and $ \alpha < M $. If $ (L - M) $ is minimum, then the greatest value of $[r]$ such that $ Ly^2 + My + r < 0 $ for all $ y \in \mathbb{R} $ is:
Match List-I with List-II: List-I