Given: \( y = e^{\tan^{-1} x} \)
Step 1: Find the first derivative \( y' \) using chain rule.
\[ y' = \frac{d}{dx} \left( e^{\tan^{-1} x} \right) = e^{\tan^{-1} x} \cdot \frac{d}{dx}(\tan^{-1} x) \]
\[ \Rightarrow y' = e^{\tan^{-1} x} \cdot \frac{1}{1 + x^2} \]
But \( y = e^{\tan^{-1} x} \), so: \[ y' = \frac{y}{1 + x^2} \]
Step 2: Differentiate again to get the second derivative \( y'' \)
\[ y'' = \frac{d}{dx} \left( \frac{y}{1 + x^2} \right) \]
Use quotient rule: \[ y'' = \frac{(1 + x^2) \cdot y' - y \cdot 2x}{(1 + x^2)^2} \]
Now substitute \( y' = \frac{y}{1 + x^2} \):
\[ y'' = \frac{(1 + x^2) \cdot \frac{y}{1 + x^2} - 2xy}{(1 + x^2)^2} = \frac{y - 2xy}{(1 + x^2)^2} \]
\[ \Rightarrow y'' = \frac{y(1 - 2x)}{(1 + x^2)^2} \]
Step 3: Multiply both sides by \( (1 + x^2)^2 \) to eliminate the denominator: \[ (1 + x^2)^2 y'' = y(1 - 2x) \]
Step 4: Rearranging: \[ (1 + x^2)^2 y'' - y(1 - 2x) = 0 \]
Or bring all terms to LHS: \[ (1 + x^2)^2 y'' + y(2x - 1) = 0 \]
But this is not matching the given options yet. Let's try expressing the final form in terms of \( y'', y', y \):
Recall: \[ y' = \frac{y}{1 + x^2} \Rightarrow y(2x - 1) = (2x - 1)(1 + x^2)y' \]
So: \[ (1 + x^2)^2 y'' + (2x - 1)(1 + x^2)y' = 0 \]
Divide the whole equation by \( 1 + x^2 \): \[ (1 + x^2) y'' + (2x - 1) y' = 0 \]
Final Result: \[ (1 + x^2) y'' + (2x - 1) y' = 0 \]
This matches option (1):
\((1 + x^2) y_2 + (2x - 1) y_1 = 0\)
\[ \boxed{(1 + x^2) y'' + (2x - 1) y' = 0} \]
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).
Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.