We are given the equation:
\[
\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)
\]
Differentiate both sides with respect to \( x \). The left-hand side involves terms with both \( x \) and \( y \), so we apply the chain rule for each term. First, differentiate \( \sqrt{1 - x^2} \) with respect to \( x \):
\[
\frac{d}{dx} \left( \sqrt{1 - x^2} \right) = \frac{-x}{\sqrt{1 - x^2}}.
\]
Next, differentiate \( \sqrt{1 - y^2} \) with respect to \( x \) using the chain rule:
\[
\frac{d}{dx} \left( \sqrt{1 - y^2} \right) = \frac{-y \frac{dy}{dx}}{\sqrt{1 - y^2}}.
\]
Now differentiate the right-hand side \( a(x - y) \):
\[
\frac{d}{dx} \left( a(x - y) \right) = a \left( 1 - \frac{dy}{dx} \right).
\]
Thus, the differentiation of the given equation becomes:
\[
\frac{-x}{\sqrt{1 - x^2}} + \frac{-y \frac{dy}{dx}}{\sqrt{1 - y^2}} = a \left( 1 - \frac{dy}{dx} \right).
\]
Now, solve for \( \frac{dy}{dx} \). First, collect the terms involving \( \frac{dy}{dx} \) on one side:
\[
\frac{-y \frac{dy}{dx}}{\sqrt{1 - y^2}} + a \frac{dy}{dx} = \frac{x}{\sqrt{1 - x^2}} + a.
\]
Factor out \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} \left( -\frac{y}{\sqrt{1 - y^2}} + a \right) = \frac{x}{\sqrt{1 - x^2}} + a.
\]
Solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{\frac{x}{\sqrt{1 - x^2}} + a}{a - \frac{y}{\sqrt{1 - y^2}}}.
\]
This simplifies to:
\[
\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}.
\]
Thus, we have proved the given equation.