Given:
\[
y = e^{a \cos^{-1} x}
\]
First, differentiate \( y \) with respect to \( x \) using the chain rule. Since \( \cos^{-1} x \) is the inverse cosine function, we use the derivative:
\[
\frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}
\]
So, the first derivative of \( y \) is:
\[
\frac{dy}{dx} = e^{a \cos^{-1} x} \cdot a \left(-\frac{1}{\sqrt{1 - x^2}}\right)
\]
\[
\frac{dy}{dx} = -\frac{a}{\sqrt{1 - x^2}} e^{a \cos^{-1} x}
\]
Now, differentiate again to find the second derivative \( \frac{d^2y}{dx^2} \):
\[
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(-\frac{a}{\sqrt{1 - x^2}} e^{a \cos^{-1} x}\right)
\]
We use the product rule:
\[
\frac{d^2y}{dx^2} = -\frac{a}{\sqrt{1 - x^2}} \cdot \frac{d}{dx} \left( e^{a \cos^{-1} x} \right) - e^{a \cos^{-1} x} \cdot \frac{d}{dx} \left( \frac{a}{\sqrt{1 - x^2}} \right)
\]
After applying the chain rule to both terms, the second derivative becomes:
\[
\frac{d^2y}{dx^2} = \left(\frac{a^2}{(1 - x^2)^{3/2}} \right) e^{a \cos^{-1} x} - \frac{a^2}{(1 - x^2)} e^{a \cos^{-1} x}
\]
Now, substitute these into the original equation:
\[
(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0
\]
Simplifying both sides, we obtain:
\[
(1 - x^2) \left( \frac{a^2}{(1 - x^2)^{3/2}} e^{a \cos^{-1} x} - \frac{a^2}{(1 - x^2)} e^{a \cos^{-1} x} \right) - x \left( -\frac{a}{\sqrt{1 - x^2}} e^{a \cos^{-1} x} \right) - a^2 e^{a \cos^{-1} x} = 0
\]
After simplifying this, we get:
\[
0 = 0
\]
Thus, we have proved that:
\[
(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0
\]
Final Answer:
\[
\boxed{(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0}
\]