Question:

If y = a sin x + b cos x, then y2 + (dydx)2(\frac{dy}{dx})^2 is a

Show Hint

When dealing with functions of the form y=asinx+bcosx y = a \sin x + b \cos x , the sum of y2 y^2 and (dydx)2 \left( \frac{dy}{dx} \right)^2 simplifies to a constant. This is because the sum of squares of sine and cosine terms always results in 1, leading to a constant expression. This property is useful when solving problems involving trigonometric functions.

Updated On: Mar 29, 2025
  • function of x and y
  • function of x
  • constant
  • function of y
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

The correct answer is (C) : constant.
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

The correct answer is: (C) constant.

We are given the function y=asinx+bcosx y = a \sin x + b \cos x , and we are asked to find the value of y2+(dydx)2 y^2 + \left( \frac{dy}{dx} \right)^2 .

Step 1: Differentiate y=asinx+bcosx y = a \sin x + b \cos x

The derivative of y y with respect to x x is: dydx=acosxbsinx \frac{dy}{dx} = a \cos x - b \sin x Step 2: Find y2 y^2 and (dydx)2 \left( \frac{dy}{dx} \right)^2

Now, square both y y and dydx \frac{dy}{dx} : y2=(asinx+bcosx)2=a2sin2x+2absinxcosx+b2cos2x y^2 = (a \sin x + b \cos x)^2 = a^2 \sin^2 x + 2ab \sin x \cos x + b^2 \cos^2 x Similarly, square dydx \frac{dy}{dx} : (dydx)2=(acosxbsinx)2=a2cos2x2absinxcosx+b2sin2x \left( \frac{dy}{dx} \right)^2 = (a \cos x - b \sin x)^2 = a^2 \cos^2 x - 2ab \sin x \cos x + b^2 \sin^2 x Step 3: Add y2 y^2 and (dydx)2 \left( \frac{dy}{dx} \right)^2

Add the two expressions: y2+(dydx)2=(a2sin2x+2absinxcosx+b2cos2x)+(a2cos2x2absinxcosx+b2sin2x) y^2 + \left( \frac{dy}{dx} \right)^2 = \left( a^2 \sin^2 x + 2ab \sin x \cos x + b^2 \cos^2 x \right) + \left( a^2 \cos^2 x - 2ab \sin x \cos x + b^2 \sin^2 x \right) Simplifying: y2+(dydx)2=a2(sin2x+cos2x)+b2(sin2x+cos2x) y^2 + \left( \frac{dy}{dx} \right)^2 = a^2 (\sin^2 x + \cos^2 x) + b^2 (\sin^2 x + \cos^2 x) Since sin2x+cos2x=1 \sin^2 x + \cos^2 x = 1 , this becomes: y2+(dydx)2=a2+b2 y^2 + \left( \frac{dy}{dx} \right)^2 = a^2 + b^2 Therefore, y2+(dydx)2 y^2 + \left( \frac{dy}{dx} \right)^2 is a constant, specifically a2+b2 a^2 + b^2 . Thus, the correct answer is (C) constant.
Was this answer helpful?
0
0

Top Questions on Trigonometric Functions

View More Questions