The correct answer is: (C) constant.
We are given the function \( y = a \sin x + b \cos x \), and we are asked to find the value of \( y^2 + \left( \frac{dy}{dx} \right)^2 \).
Step 1: Differentiate \( y = a \sin x + b \cos x \)
The derivative of \( y \) with respect to \( x \) is:
\[
\frac{dy}{dx} = a \cos x - b \sin x
\]
Step 2: Find \( y^2 \) and \( \left( \frac{dy}{dx} \right)^2 \)
Now, square both \( y \) and \( \frac{dy}{dx} \):
\[
y^2 = (a \sin x + b \cos x)^2 = a^2 \sin^2 x + 2ab \sin x \cos x + b^2 \cos^2 x
\]
Similarly, square \( \frac{dy}{dx} \):
\[
\left( \frac{dy}{dx} \right)^2 = (a \cos x - b \sin x)^2 = a^2 \cos^2 x - 2ab \sin x \cos x + b^2 \sin^2 x
\]
Step 3: Add \( y^2 \) and \( \left( \frac{dy}{dx} \right)^2 \)
Add the two expressions:
\[
y^2 + \left( \frac{dy}{dx} \right)^2 = \left( a^2 \sin^2 x + 2ab \sin x \cos x + b^2 \cos^2 x \right) + \left( a^2 \cos^2 x - 2ab \sin x \cos x + b^2 \sin^2 x \right)
\]
Simplifying:
\[
y^2 + \left( \frac{dy}{dx} \right)^2 = a^2 (\sin^2 x + \cos^2 x) + b^2 (\sin^2 x + \cos^2 x)
\]
Since \( \sin^2 x + \cos^2 x = 1 \), this becomes:
\[
y^2 + \left( \frac{dy}{dx} \right)^2 = a^2 + b^2
\]
Therefore, \( y^2 + \left( \frac{dy}{dx} \right)^2 \) is a constant, specifically \( a^2 + b^2 \).
Thus, the correct answer is
(C) constant.