Step 1: Differentiate once. \[ y = A\cos\theta + B\sin\theta \] \[ \dfrac{dy}{d\theta} = -A\sin\theta + B\cos\theta \]
Step 2: Differentiate again. \[ \dfrac{d^{2}y}{d\theta^{2}} = -A\cos\theta - B\sin\theta \]
Step 3: Compare with original function. \[ \dfrac{d^{2}y}{d\theta^{2}} = -(A\cos\theta + B\sin\theta) = -y \]
Final Answer: \[ \boxed{\dfrac{d^{2}y}{d\theta^{2}} = -y} \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :