Step 1: Differentiate once. \[ y = A\cos\theta + B\sin\theta \] \[ \dfrac{dy}{d\theta} = -A\sin\theta + B\cos\theta \]
Step 2: Differentiate again. \[ \dfrac{d^{2}y}{d\theta^{2}} = -A\cos\theta - B\sin\theta \]
Step 3: Compare with original function. \[ \dfrac{d^{2}y}{d\theta^{2}} = -(A\cos\theta + B\sin\theta) = -y \]
Final Answer: \[ \boxed{\dfrac{d^{2}y}{d\theta^{2}} = -y} \]