Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Differentiability of a function A function f(x) is said to be differentiable at a point of its domain if it has a finite derivative at that point. Thus f(x) is differentiable at x = a
\(\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\)
⇒ f'(a – 0) = f'(a + 0)
⇒ left-hand derivative = right-hand derivative.
Thus function f is said to be differentiable if left hand derivative & right hand derivative both exist finitely and are equal.
If f(x) is differentiable then its graph must be smooth i.e. there should be no break or corner.
Note:
(i) Every differentiable function is necessarily continuous but every continuous function is not necessarily differentiable i.e. Differentiability ⇒ continuity but continuity ⇏ differentiability
(ii) For any curve y = f(x), if at any point \(\frac{d y}{d x}\) = 0 or does not exist then, the point is called “critical point”.
3. Differentiability in an interval
(a) A function fx) is said to be differentiable in an open interval (a, b), if it is differentiable at every point of the interval.
(b) A function f(x) is differentiable in a closed interval [a, b] if it is