Two lines are conjugate if the pole of one lies on the other.
Let $L_1: x + y - 1 = 0$ and the pole be $(x_1, y_1)$. Polar of $(x_1, y_1)$ is:
\[
(x_1 - 2)x + (y_1 + f)y + (-2x_1 + fy_1 - 1) = 0
\]
Matching with $x + y - 1 = 0$, compare coefficients:
\[
\text{(1)}\ x_1 - 2 = 1 \Rightarrow x_1 = 3,
\quad \text{(2)}\ y_1 + f = 1 \Rightarrow y_1 = 1 - f
\]
Substitute into constant term:
\[
-2(3) + f(1 - f) - 1 = -6 + f - f^2 - 1 = -7 + f - f^2
\]
Set equal to $-1$:
\[
-7 + f - f^2 = -1 \Rightarrow f^2 - f - 6 = 0 \Rightarrow f = 3 \text{ or } -2
\]