>
Exams
>
Quantitative Aptitude
>
Exponents
>
if x left frac 3 2 right 2 times left frac 2 3 rig
Question:
If \( x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{-4
\), then the value of \( x^{-2} \) is:}
Show Hint
When dealing with negative exponents, use the rule: \[ \left( \frac{a}{b} \right)^{-n} = \left( \frac{b}{a} \right)^n \] to simplify expressions.
BHU PET - 2019
BHU PET
Updated On:
Mar 25, 2025
\( \left( \frac{2}{3} \right)^8 \)
\( \left( \frac{3}{2} \right)^6 \)
\( \left( \frac{3}{2} \right)^{12} \)
\( \left( \frac{2}{3} \right)^{12} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
Given: \[ x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{-4} \] Rewriting the negative exponent: \[ x = \left( \frac{3}{2} \right)^2 \times \left( \frac{3}{2} \right)^4 \] Using \( a^m \times a^n = a^{m+n} \): \[ x = \left( \frac{3}{2} \right)^6 \] Now, finding \( x^{-2} \): \[ x^{-2} = \left( \frac{3}{2} \right)^{-12} \] Using the negative exponent rule: \[ x^{-2} = \left( \frac{2}{3} \right)^{12} \]
Thus, the correct answer is \( \left( \frac{2}{3} \right)^{12} \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Exponents
Given: \( 3^{2x} - 12 \times 3^{x} + 27 = 0 \).
Quantity A: x
Quantity B: \(3^{x}\)
NPAT - 2025
Quantitative Aptitude
Exponents
View Solution
The solution of the equation \( 2^{x+2} + 2^{x+1} = 48 \) will be:
UPCATET - 2024
Mathematics
Exponents
View Solution
If \( 2^{x+6} = 8^{x+1} \), then the value of \( x \) is:
UPCATET - 2024
Mathematics
Exponents
View Solution
If \( 2^x = 5^{y} = 10^{-z} \), then the value of \( \left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) \) is:
JEECUP - 2024
Mathematics
Exponents
View Solution
The number of multiplications needed to find $ x^{32} $ when $ x $ is given, is
AP PGECET - 2024
Computer Science & Information Technology
Exponents
View Solution
View More Questions
Questions Asked in BHU PET exam
Find out the next number in the series 97, 86, 73, 58, 45, (............):
BHU PET - 2019
Number Series
View Solution
If a particle is fixed on a rotating frame of reference, the fictitious force acting on the particle will be:
BHU PET - 2019
rotational motion
View Solution
Given the Bessel function:
$$ J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 2^2} - \frac{x^6}{2^2 \cdot 2^2 \cdot 2^2} + \dots $$
The Bessel function $ J_1(x) $ is given by:
BHU PET - 2019
Special Functions
View Solution
One solution (about $ x = 0 $ ) of the differential equation
$$ x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0 $$ is $ y_1(x) = c_1x^2$ . A second linearly independent solution (with another constant $ c_2 $ ) is:
BHU PET - 2019
Differential Equations
View Solution
What will be the change in the volume of a cube when its side becomes 10 times the original side?
BHU PET - 2019
Volume of Cube, Cuboid and Cylinder
View Solution
View More Questions