Step 1: Compute \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \).
\[
\frac{dx}{dt} = \frac{d}{dt} \left( \frac{9t^2}{1 + t^4} \right)
\]
Using the quotient rule:
\[
\frac{dx}{dt} = \frac{(18t(1 + t^4) - 9t^2(4t^3))}{(1 + t^4)^2}
\]
\[
= \frac{18t + 18t^5 - 36t^5}{(1 + t^4)^2}
\]
\[
= \frac{18t - 18t^5}{(1 + t^4)^2}
\]
Similarly, for \( y \):
\[
\frac{dy}{dt} = \frac{d}{dt} \left( \frac{16t^2}{1 - t^4} \right)
\]
\[
= \frac{32t(1 - t^4) + 16t^2(4t^3)}{(1 - t^4)^2}
\]
\[
= \frac{32t - 32t^5 + 64t^5}{(1 - t^4)^2}
\]
\[
= \frac{32t + 32t^5}{(1 - t^4)^2}
\]
Step 2: Compute \( \frac{dy}{dx} \).
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\]
\[
= \frac{16}{9} \left( \frac{1 + t^4}{1 - t^4} \right)^3
\]
Thus, the required derivative is:
\[
\mathbf{\frac{16}{9} \left( \frac{1 + t^4}{1 - t^4} \right)^3}
\]